Intestinal preservation in a birdlike dinosaur supports conservatism in digestive canal evolution among theropods

Intestinal preservation in a birdlike dinosaur supports conservatism in digestive canal evolution among theropods

  • Turner, A. H., Makovicky, P. J. & Norell, M. A. A review of dromaeosaurid systematics and paravian phylogeny. Bull. Am. Mus. Nat. Hist. 371, 1–206 (2012).

    Article 

    Google Scholar
     

  • Xu, X., Wang, X. L. & Wu, X. C. A dromaeosaur dinosaur with filamentous integument from the Yixian Formation of China. Nature 401, 262–266 (1999).

    Article 
    ADS 

    Google Scholar
     

  • Xu, X., Zhou, Z. & Wang, X. The smallest known non-avian theropod dinosaur. Nature 408, 705–707 (2000).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Pei, R., Li, Q., Meng, Q., Gao, K. Q. & Norell, M. A. A new specimen of Microraptor (Theropoda: Dromaeosauridae) from the Lower Cretaceous of western Liaoning, China. Am. Mus. Novit. 3821, 1–28 (2014).

    Article 

    Google Scholar
     

  • Hwang, S. H., Norell, M. A., Ji, Q. & Gao, K. Q. New specimens of Microraptor zhaoianus (Theropoda: Dromaeosauridae) from northeastern China. Am. Mus. Novit. 3381, 1–44 (2002).

    Article 

    Google Scholar
     

  • Zheng, X., Xu, X., You, H., Zhao, Q. & Dong, Z. A short-armed dromaeosaurid from the Jehol group of China with implications for early dromaeosaurid evolution. Proc. R. Soc. B Biol. Sci. 277, 211–217 (2010).

    Article 

    Google Scholar
     

  • Lü, J. & Brusatte, S. L. A large, short-armed, winged dromaeosaurid (Dinosauria: Theropoda) from the Early Cretaceous of China and its implications for feather evolution. Sci. Rep. 5, 1–11 (2015).


    Google Scholar
     

  • Han, G. et al. A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance. Nat. Commun. 5, 4382 (2014).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cau, A. et al. Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs. Nature 552, 395–399 (2017).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Currie, P. J. & Evans, D. C. Cranial anatomy of new specimens of Saurornitholestes langstoni (Dinosauria, Theropoda, Dromaeosauridae) from the Dinosaur Park formation (Campanian) of Alberta. Anat. Rec. 04715, 1–25 (2019).


    Google Scholar
     

  • Xu, X. & Wu, X. C. Cranial morphology of Sinornithosaurus millenii (Dinosauria: Theropoda: Dromaeosauridae) from the Yixian formation of Liaoning, China. Can. J. Earth Sci. 38, 1739–1752 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Barsbold, R. & Osmólska, H. The skull of Velociraptor (Theropoda) from the Late Cretaceous of Mongolia. Acta Palaeontol. Pol. 44, 189–219 (1999).


    Google Scholar
     

  • Cau, A. The body plan of Halszkaraptor escuilliei (Dinosauria, Theropoda) is not a transitional form along the evolution of dromaeosaurid hypercarnivory. PeerJ 8, e8672 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xu, X. et al. A new dromaeosaurid (Dinosauria: Theropoda) from the upper Cretaceous Wulansuhai Formation of Inner Mongolia, China. Zootaxa 2403, 1–9 (2010).

    Article 

    Google Scholar
     

  • Poust, A. W., Gao, C. L., Varricchio, D. J., Wu, J. L. & Zhang, F. J. A new microraptorine theropod from the Jehol Biota and growth in early dromaeosaurids. Anat. Rec. 303, 963–987 (2020).

    Article 

    Google Scholar
     

  • Godefroit, P., Currie, P. J., Hong, L., Shang, C. Y. & Dong, Z. M. A new species of Velociraptor (Dinosauria: Dromaeosauridae) from the upper Cretaceous of northern China. J Vertebr. Paleontol. 28, 432–438 (2008).

    Article 

    Google Scholar
     

  • Evans, D. C., Larson, D. W. & Currie, P. J. A new dromaeosaurid (Dinosauria: Theropoda) with Asian affinities from the latest Cretaceous of North America. Sci. Nat. 100, 1041–1049 (2013).

    Article 

    Google Scholar
     

  • Powers, M. J. et al. A new hypothesis of eudromaeosaurian evolution: CT scans assist in testing and constructing morphological characters. J. Vertebr. Paleontol. 41(5), e2010087 (2022).

    Article 

    Google Scholar
     

  • Novas, F. E., Pol, D., Canale, J. I., Porfiri, J. D. & Calvo, J. O. A bizarre Cretaceous theropod dinosaur from Patagonia and the evolution of Gondwanan dromaeosaurids. Proc. R. Soc. B Biol. Sci. 276, 1101–1007 (2009).

    Article 

    Google Scholar
     

  • Ostrom, J. H. Osteology of Deinonychus antirrhopus, an unusual theropod from the lower Cretaceous of Montana. Bull. Peabody Mus. Nat. Hist. 30, 1–165 (1969).


    Google Scholar
     

  • Senter, P., Kirkland, J. I., DeBlieux, D. D., Madsen, S. & Toth, N. New dromaeosaurids (Dinosauria: Theropoda) from the lower Cretaceous of Utah, and the evolution of the dromaeosaurid tail. PLoS ONE 7(5), 1–20 (2012).

    Article 

    Google Scholar
     

  • Brusatte, S. L. et al. The osteology of Balaur bondoc, an island-dwelling dromaeosaurid (Dinosauria: Theropoda) from the Late Cretaceous of Romania. Bull. Am. Mus. Nat. Hist. 374, 1–100 (2013).

    Article 

    Google Scholar
     

  • Xu, X. et al. Four-winged dinosaurs from China. Nature 421, 335–340 (2003).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Cau, A., Beyrand, V., Barsbold, R., Tsogtbaatar, K. & Godefroit, P. Unusual pectoral apparatus in a predatory dinosaur resolves avian wishbone homology. Sci. Rep. 11(14722), 1–10 (2021).


    Google Scholar
     

  • Xu, X. & Qin, Z. C. A new tiny dromaeosaurid dinosaur from the lower Cretaceous Jehol Group of western Liaoning and niche differentiation among the Jehol dromaeosaurids. Vert. PalAs 55, 129–144 (2017).


    Google Scholar
     

  • Zheng, X. et al. Structure and possible ventilatory function of unusual, expanded sternal ribs in the Early Cretaceous bird Jeholornis. Cretac. Res. 116, 104597 (2020).

    Article 

    Google Scholar
     

  • Rhodes, M. M. & Currie, P. J. The homology, form, and function of the microraptorine lateral pubic tubercle. J. Vertebr. Paleontol. 40, e1755866 (2020).

    Article 

    Google Scholar
     

  • Novas, F. E., Brissón Egli, F., Agnolín, F. L., Gianechini, F. A. & Cerda, I. Postcranial osteology of a new specimen of Buitreraptor gonzalezorum (Theropoda, Unenlagiidae). Cretac Res. 83, 127–167 (2018).

    Article 

    Google Scholar
     

  • Novas, F. E., Agnolín, F. L., Motta, M. J. & Brissón, E. F. Osteology of Unenlagia comahuensis (Theropoda, Paraves, Unenlagiidae) from the Late Cretaceous of Patagonia. Anat. Rec. 304, 2741–2788 (2021).

    Article 

    Google Scholar
     

  • Forster, C. A., O’Connor, P. M., Chiappe, L. M. & Turner, A. H. The osteology of the Late Cretaceous paravian Rahonavis ostromi from Madagascar. Palaeontol. Electron 23.(2), a31 (2020).


    Google Scholar
     

  • Holtz, T. R. The arctometatarsalian pes, an unusual structure of the metatarsus of Cretaceous Theropoda (Dinosauria: Saurischia). J. Vertebr. Paleontol. 14(4), 480–519 (1994).

    Article 

    Google Scholar
     

  • Perle, A., Norell, M. A., & Clark, J. M. A new maniraptoran theropod – Achillobator giganticus (Dromaeosauridae)-from the Upper Cretaceous of Burkhant, Mongolia. Contributions of the Department of Geology, National University of Mongolia 101, 1–105 (1999).

  • Xu, X., Zhou, Z. H. & Prum, R. O. Branched integumental structures in Sinornithosaurus and the origin of feathers. Nature 410, 200–204 (2001).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Zhang, F. et al. Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 463, 1075–1078 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. Plumage color patterns of an extinct dinosaur. Science 327, 1369–1372 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Li, Q. et al. Reconstruction of Microraptor and the evolution of iridescent plumage. Science 335, 1215–1219 (2012).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Nesbitt, S. J., Turner, A. H., Erickson, G. M. & Norell, M. A. Prey choice and cannibalistic behaviour in the theropod Coelophysis. Biol. Lett. 22(4), 611–614 (2006).

    Article 

    Google Scholar
     

  • Charig, A. J. & Milner, A. C. Baryonyx walkeri, a fish-eating dinosaur from the Wealden of Surrey. Bull. Nat. Hist. Mus. 53, 11–70 (1997).


    Google Scholar
     

  • Ostrom, J. H. The osteology of Compsognathus longipes. Zitteliana 4, 73–118 (1978).


    Google Scholar
     

  • Xing, L. et al. Abdominal contents from two large early Cretaceous compsognathids (Dinosauria: Theropoda) demonstrate feeding on confuciusornithids and Dromaeosaurids. PLoS ONE 7(8), e44012 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dal Sasso, C. D. & Maganuco, S. Scipionyx samniticus (Theropoda: Compsognathidae) from the lower Cretaceous of Italy-osteology, ontogenetic assessment, phylogeny, soft tissue anatomy, taphonomy and palaeobiology. Memorie (Museo Civico di Storia Naturale di Milano) 37, 1–281 (2011).


    Google Scholar
     

  • Currie, P. J. & Chen, P. J. Anatomy of Sinosauropteryx prima from Liaoning, northeastern China. Can. J. Earth Sci. 38, 1705–1727 (2001).

    Article 
    ADS 

    Google Scholar
     

  • Varricchio, D. J. Gut contents from a Cretaceous tyrannosaurid; implications for theropod dinosaur digestive tracts. J. Paleontol. 75, 401–406 (2001).

    Article 

    Google Scholar
     

  • Zheng, X. T. et al. Exceptional dinosaur fossils reveal early origin of avian-style digestion. Sci. Rep. 8, 1–8 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Dalsätt, J., Zhou, Z., Zhang, F. & Ericson, P. G. P. Food remains in Confuciusornis sanctus suggest a fish diet. Sci. Nat. 93, 444–446 (2006).

    Article 

    Google Scholar
     

  • Zheng, X. et al. New specimens of Yanornis indicate a piscivorous diet and modern alimentary canal. PLoS ONE 9(4), e95036 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xing, L. et al. Piscivory in the feathered dinosaur Microraptor. Evolution 67, 2441–2445 (2013).

    Article 
    PubMed 

    Google Scholar
     

  • Chin, K., Tokaryk, T., Erickson, G. M. & Calk, C. A king-size theropod coprolite. Nature 393, 680–682 (1998).

    Article 
    ADS 

    Google Scholar
     

  • Briggs, D. E. G. The role of decay and mineralization in the preservation of soft-bodied fossils. Annu. Rev. Earth Planet Sci. 31, 275–301 (2003).

    Article 
    ADS 

    Google Scholar
     

  • Naish, D., Martill, D. M. & Frey, E. Ecology, systematics and biogeographical relationships of dinosaurs, including a new theropod, from the Santana Formation (?Albian, Early Cretaceous) of Brazil. Hist. Biol. 16, 57–70 (2004).

    Article 

    Google Scholar
     

  • Cau, A. Comments on the Mesozoic theropod dinosaurs from Italy. Atti. Soc. Nat. Mat. Modena 152, 81–95 (2021).

    ADS 

    Google Scholar
     

  • Goloboff, P. & Catalano, S. TNT version 1.5. Cladistics 32, 221–238 (2016).

    Article 
    PubMed 

    Google Scholar
     

  • Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol 29, 1969–1973 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bouckaert, R. R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 10, e1003537 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lewis, P. O. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50, 913–925 (2001).

    Article 
    PubMed 

    Google Scholar
     

  • Gavryushkina, A., Welch, D., Stadler, T. & Drummond, A. J. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLOS Comput. Biol. 10, e1003919 (2014).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • #Intestinal #preservation #birdlike #dinosaur #supports #conservatism #digestive #canal #evolution #among #theropods

    Leave a Comment

    Your email address will not be published. Required fields are marked *